

Challenges, Opportunities and Ethical Considerations of Early Phase Oncology Trials

Dr. Herbert H. Loong MBBS, PDipMDPath, MRCP(UK), FRCP Edin, FHKCP, FHKAM(Medicine)

Clinical Associate Professor, Department of Clinical Oncology Deputy Medical Director, Phase 1 Clinical Trial Centre The Chinese University of Hong Kong

Honorary Consultant, Department of Clinical Oncology, Prince of Wales Hospital Hospital Authority, Hong Kong

Email: <u>h_loong@clo.cuhk.edu.hk</u> | Twitter: @herbloong

Copyright © 2017. All Rights Reserved. Faculty of Medicine, The Chinese University of Hong Kong

Disclosures | COIs – H Loong

Advisory:	Boehringer-Ingelheim, Celgene, Eli-Lilly, Illumina, Novartis, Merck Sereno, Takeda, George Clinical
Speakers' Bureau:	AbbVie, Bayer, Eisai, Eli-Lilly, Guardant Health, Novartis
Travel Support:	Bayer, Boehringer-Ingelheim, MSD, Novartis, Pfizer
Research Funding:	MSD, Mundipharma, Novartis
Others:	Member, Pharmacy and Poisons (Registration of Pharmaceutical Products and Substances: Certification of Clinical Trial/Medicinal Test) Committee, Pharmacy & Poisons Board of Hong Kong

My Role as a Clinical Trialist ...

"As an early phase drug developer, my interest is to interrogate a candidate drug recently developed in the laboratory, through the hoops and hurdles of clinical trials and potentially improving the standard of care of patients"

Oncology Drug Development: The Traditional Model

<u>Steps</u>

Basic Research	Lead Identification > Optimisation	Phase I	Phase II	Phase III Pivotal randomised	Registration	Global Launch	Global Optimization / NILEX
-------------------	---------------------------------------	---------	----------	------------------------------------	--------------	------------------	--------------------------------

Purpose

Identify Potential New Medicines	Safety Dose PK/PD	Activity Safety PK/PD	Efficacy Superiority	Obtain Marketing Authorisation	Establish Market	Expand Market
----------------------------------	-------------------------	-----------------------------	-------------------------	--------------------------------------	---------------------	---------------

Number of compounds

Estimated Time

8-10	1 - 2	2 - 4	2-5	1 – 2	1	Until Patent Expiration
Years	Years	Years	Years	Years	Year	

Fig. 1. Oncology Drug Development: The Traditional Rocket Model.

- High attrition rate
- Large number of patients
- Long development time

Evolving Roles of Phase 1 Oncology Trials

Traditional

- "Toxicity trials"
- Traditionally all-comers
- Determine recommended phase 2 dose and schedule
- Aim to elucidate adverse events and pharmacokinetic profiles with limited or no therapeutic intent

- 港 中 文 大 學 ne Chinese University of Hong Kong

Recent

- Determination of safety remains paramount importance
- Increase availability of molecularly targeted agents w/ biomarkers → refine patients' selection
- Phase 1b trials in combination with existing (approved) agents
- Majority of phase 1 trials now have therapeutic aims, even in FIH settings

How have oncology phase 1 trials performed over the years?

Response Rates of Phase 1 Trials

Table 1 Response rate	es observed	in selected oncology phas	e I trials						
Series	Period covered	Trials included (n)	Patients (n)	Agents tested (n)	ORR	Grade 5 AEs at least possibly related to drug	Ref.		1970-80s – <
Estey et al. (1986)	1974–1982	187	NR	54	4.2%	NR	13		1570 005 <
Decoster et al. (1990)	1972–1987	211	6,639	87	4.5%	0.5%	14		
Horstmann et al. (2005)	1991-2002	460	11,935	NR	10.6%	0.49%;	15		1990s - ~ 119
Roberts et al. (2004)	1991-2002	213	6,474	149	3.8%	0.54%	16		15505 117
Schwaederle et al. (2016)	2011–2013	Biomarker-driven trials of targeted agents: 57	Biomarker-driven trials: 2,655	NR	31.1% (42% in the case of genomic biomarkers)	1.9%	17	es	
		Non-biomarker-driven trials of targeted agents: <i>n</i> =177	Non-biomarker- driven trials:		5.1%	NR		: rat	Contempora ~ 20%
		Non-biomarker-driven trials of cytotoxic agents: <i>n</i> =116	n=10,548		Non-biomarker-driven trials of cytotoxic agents: 4.7%	Non-biomarker- driven trials of cytotoxic agents: 2.2%		onse	(biomarker
Waligora et al. (2018)	2004–2015	170	4,604	NR	10.29%	2.09%	18	esp	highor ~ 42%
Chakiba et al. (2018)	2014-2015	224	NR	224	19.8%	NR	19	Ř	11g11e1 42%

AE, adverse event; NR, not reported; ORR, overall response rate

As comparison, ORRs of approved oncology drugs as monotherapy are often >20%

Do we know whether improvement in ORR is associated with improvement in survival?

Is this true in the era of molecular targeted therapies?

Correlation between treatment effects on overall response rate and progression-free survival/overall survival in comparative trials involving targeted therapies in molecularly enriched populations

• BJ Solomon¹, **Herbert Loong**², Yvonne Summers³, Zachary M Thomas⁴, Pearl French⁴, Boris Kin Lin⁴, Andreas Sashegyi⁴, Jurgen Wolf⁵, James Chih-Hsin Yang⁶, Alexander Drilon⁷

¹ Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; ²Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR; ³ The Christie Hospital, Manchester, UK; ⁴Eli Lilly and Company, Indianapolis, Indiana, USA; ⁵Centrum für Integrierte Onkologie (CIO), Universitätsklinikum Köln, Cologne, Germany; ⁶Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; ⁷Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA

Inclusion Criteria:

- Phase 3 clinical trials
- Targeted agents in experimental arm, conventional treatment (non-targeted) in control arm
- Study conducted in molecularly enriched population
- Availability of ORR and PFS data at minimum

港中文大學

The Chinese University of Hong Kong

Results

Trial ID (NCT Number)	Experimental Arm Therapy	Control Arm Therapy	Experimental Arm N	Control Arm N	Experimental Arm ORR	Control Arm ORR	Experimental Arm mPFS (mos)	Control Arm mPFS (mos)	PFS HR
NCT00949650	afatinib	pemetrexed/cisplatin	230	115	0.56	0.23	11.2	6.9	0.58
NCT01154140	crizotinib	pemetrexed/platinum	172	171	0.74	0.45	10.9	7.0	0.45
NCT02604342	alectinib	pemetrexed or docetaxel	79	40	0.51	0.02	10.9	1.4	0.20
NCT01639001	crizotinib	pemetrexed/platinum	104	103	0.87	0.46	11.1	6.8	0.40
NCT00932893	crizotinib	pemetrexed or docetaxel	173	174	0.65	0.20	7.7	3.0	0.49
NCT01121393	afatinib	gemcitabine/cisplatin	242	122	0.68	0.23	11.0	5.6	0.28
NCT01544179	gefitinib/pemetrexed/cisplatin	placebo/pemetrexed/cisplatin	133	132	0.32	0.34	5.4	4.6	0.86
NCT01227889	dabrafenib	dacarbazine	187	63	0.6	0.24	6.9	2.7	0.40
NCT02151981	osimertinib	pemetrexed/platinum	279	140	0.71	0.31	10.1	4.4	0.30
STI571 (IRIS)*	imatinib	interferon/cytarabine	534	313	0.97	0.57	NR	NR	0.38
NCT00322452	gefitinib	carboplatin/paclitaxel	132	129	0.71	0.47	NR	NR	0.48
NCT01342965	erlotinib	gemcitabine/cisplatin	110	107	0.63	0.34	11.0	5.5	0.34
NCT02959749	osimertinib	docetaxel/bevacizumab	74	73	0.62	0.08	10.2	3.0	0.23
NCT00883779	erlotinib/gemcitabine/platinum	gemcitabine/platinum	49	48	0.84	0.15	16.8	6.9	0.25
NCT01000025	dacomitinib	placebo	114	68	0.11	0.01	3.52	1.0	0.48

Abbreviations: mos=Months, NCT=National Clinical Trial, ORR=Objective Response Rate, PFS=Progression-Free Survival, mPFS=median Progression-free Survival, HR= Hazard Ratio

Linear relationship of the log PFS hazard ratio with ORR difference and log ORR odds ratio

- ORR effect size (both the ORR difference and log odds ratio) and the log PFS hazard ratio were strongly correlated (-.78, p-value = .0007)
- No significant correlation was found between ORR and OS likely due to subsequent therapies

'Germline Issues' of phase 1 trials

Description		Iss	Jes	How to rectify?				
• Ir s s	nvariably ingle-arm tudies	•	Statistical framework based on accuracy of performance of historical controls – are these contemporary enough?	•	Require updated data on performance of 'standard-of-care' Clear biological rationale for MTAs			
• Ir 0 5	nvariably open-labelled tudies	•	Investigators' bias on assessment of response and toxicities	•	BICR of imaging if feasible			
• Ir ti Ic Ie	nitial patients reated at ower dose evels	•	 Possible sub-therapeutic dosing in initial cohorts Although typically in MTA trials, higher dose levels are not associated with higher RR 	•	Accelerated dose titration Allowance of intra-patient dose modification/escalation			
• S p s c	elected patients at elected entres	•	Typically patients of good PS recruited in phase 1 trials – does this necessary recapitulate in community patients? Patients treated at expert centres	•	Widening of inclusion criteria to allow for lower PS during expansion phase			

Phase 1 oncology trials are now considered therapeutic trials

What is the situation in Asia?

Improving Asian Access to Early Phase Clinical Trials

Why do Oncology Phase 1 Trials in Asia?

- Different epidemiology of cancer in Asia countries from Western population
- Possible difference in drug tolerance, metabolism, pharmacogenomic profiles in Asians
- Large population of patients
- Huge market share
- Requirement of local clinical trial data for drug approval in some jurisdictions

Enhancing collaborations - "AsiaOne" – Asian Phase 1 Consortium

Asian Oncology Early Phase 1 Consortium

THE CHINESE UNIVERSITY OF HONG KONG FACULTY OF MEDICINE

PHASE 1 CLINICAL TRIAL CENTRE

1edici

2nd CUHK Masterclass in Early Phase Clinical Cancer Research

- 9th November 2018 (Friday) Date:
- Time: 13:00 - 18:00
- Venue: Seminar Room 1 (next to Li Ping Medical Library), 2/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, Hong Kong

Agenda

13:00 - 13:05	Welcome and Introductions
	Prof. Brigette Ma Medical Director (Oncology), Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong
13:05 - 13:40	Rong Approaching Translational Research as a Clinician Investigator Dr. Daniel Tan
	Senior Consultant, National Cancer Centre Singapore
13:40 - 14:15	Practical Issues and Considerations for Conducting Global First-in-Human Phase 1 Trials Dr. Toshio Shimizu Head of Physicians, Early Phase 1 Drug Development Unit, National Cancer Center Japan
14:15 - 15:15	Tour at P1CTC with Light Refreshments
15:15 - 15:50	The Promise and Problems of Phase 1b Trials Dr. Chia-Chi (Josh) Lin
	Director of Phase 1 Center, National Taiwan University Hospital, Taiwan
15:50 - 16:25	Role of Specific Clinical Trial Endpoints and Implications on Drug Approval – The Canadian Example Dr. Andrea Fung
	Medical Oncology Resident, University of Calgary, Alberta, Canada
16:25 - 16:45	Coffee Break
16:45 - 17:45	Case Scenario – Practical Considerations of Developing IO-IO Combinations Led by Prof. Lillian Siu
	BMO Chair in Precision Genomics Professor. University of Toronto
17:45 - 18:00	Wrap Up and Closing Remarks

Dr. Herbert Loong Deputy Medical Director (Oncology), Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong

Challenges & Opportunities for Drug Development in

Page 1 of 8

hallenges and insights of early phase oncology drug evelopment in the Asia-Pacific region

partment of Clinical Oncology, 'Phase 1 Clinical Trial Centre, 'State Key Laboratory in Translational Oncology Research, The Chinese rbert H. Loong¹²³, Daniel S. W. Tan⁴, Toshio Shimizn¹ parameter of sumers sensoring, cruiter i samen in sense, sume ney satismosy in transational successfy negative, the same retrive of Hong Kong, Hong Kong, China, "National Cancer Centre Singapore, "National Cancer Center Hospital, Tokyo, Japan revisity or along song, song comm, common cancer comme sugepore, sugapore, reannan cancer conter trouptat, toxyo, apan orderiner. (1) Conception and design: All authors: (II) Administrative support: All authors: (III) Provision of study materials or patients: All

ternations: (i) Conception and oragin: Ail authors; (ii) Animitativaries pupper: Ail authors; (iii) exertain or analysis and interpretation: All authors; (VI) Manueript writing: All authors; (VII) hors; (VI) Manueript writing: All authors; (VII) an approva or manuscrupe: An automs, respondence as: Dr. Herbert H. Leong, Clinical Assistant Professor, Department of Clinical Oncology, The Chinese University of Hong Kong,

nee of Wiles Hospital, 30-32 Ngan Shang Street, Sharin, NT: Hong Kong, China. Email: h_loong@clo.cubik.edu.lk. Abstract: Early phase clinical trials form the very foundation of a drug's clinical development. Traditionally,

these trials were focused exclusively on dose optimization and toxicities with a broad aim across tumour types in the hope of achieving a signal of response. No real efforts were made to pair patients with best therappen-Moreorer, early phase clinical truth have traditionally been performed in Weiterin populations. Asia is the world's largest continent in terms of population size, and is rich in ethnic, cultural and socio-economic diversities. There are also distinct regulatory and methods of healthcare provision between constrines within the region. These qualities form a 'double-edge word' when it comes to drug development. However, the speake growing population which inertiability leads to increasing patients' numbers, coupled with improving economics and accessibility to quality healthcare put Asia in a prime position to play a more dominant role in early phase oncology drug development. At the same time, there is also increasing recognition of differences in disease epidemiology between different geographical regions, as well as potential pharmacogenomic in oursase episonionogy accesses minimum geographical spaces as each as parameterized and opportunities foreseen for differences between ethnicities. In this review article, the challenges faced, and opportunities foreseen for early plane oncology drug development in Asia will be discussed and illustrated with practical examples of

Keywords: Drug development, experimental therapeutics, phase 1 clinical utilits, investigational new drugs (INDa: Ada

Submitted Jun 11, 2019. Accepted for publication Jun 17, 2019. View this article at: http://dx.doi.org/10.21037/cco.2019.06.02

Asia

ie advent of globalization has led to significant changes the biomedical field over the past two decades. aditionally, phase 1 clinical trials or First-in-Human H) trials are the first step in clinical drug development are primarily designed to evaluate the safety of new ents and the recommended dose for further definitive ting in a small group of participants. This may have been undirected approach involving patients of various types cancer. The commonality between subjects participating ough such an approach is that they commonly had a

reasonable performance status, adequate haematological and biochemical reserves, and have exhausted otherwise approved treatments for their condition. Whilst taking such a broad-based approach in terms of patients' recruitment may potentially increase the rapidity of subjects' recruitment as it easts a wider net for eligible patients and determination of a recommended phase 2 dose for further testing, it does not reliably provide any efficacy information. This limitation has become more apparent in the era of advanced genomics and targeted therapies, whereby many a times improved efficacy of a therapy is not necessarily guaranteed by a higher or near toxic dose, but rather by interfering with

Chin Clin Oneol 2019 | http://dx.doi.org/10.21037/cco.2019.06.02

se university of Hong Kong

"hinese Clinical Oncology: All rights reserved.

- Geographical and ethnic diversities
- Healthcare disparities
- Regulatory hurdles & approval timelines
- Early phase trial infrastructures

Loong HH, Tan DSW, Shimizu T. Challenges and insights of early phase o ncology drug development in the Asia-Pacific region. Chinese Clinical O ncology. 2019;8(3).

Impact of COVID19 on Oncology Phase 1 Trials in Asia

 Received: 23 June 2020
 Revised: 5 October 2020
 Accepted: 7 October 2020

 DOI: 10.1111/aico.13510
 Image: Control of Contro of Control of Control of Control of Contro of Control o

ORIGINAL ARTICLE

WILEY

Overcoming the impact of the COVID-19 pandemic on oncology early phase trials and drug development in Asia–Experiences and perspectives of the Asian Oncology Early Phase 1 Consortium

Toshio Shimizu¹ O | Dong-Wan Kim² | Herbert H. Loong^{3,4} | Chia-Chi Lin⁵ | Matthew CH Ng⁶ O | Noboru Yamamoto¹ | Brigette Ma^{3,4} | Daniel SW Tan⁶

¹ Early Paus I Drug Development Farvice, Department of Deparimental Therapartici, National Cancer Crimer Hospital, Tokyo, Japan
² Department of Internal Medicine, Clinical Trials center, Secold National University Hospital, Secol, South Korea
¹ Pausa I Clinical Tarker, The Clinices University of Hospital, Secold South Korea
¹ Pausa I Clinical Tarker, The Clinices University Hospital, Tarker, The Clinices University Hospital, Secold South Korea
¹ Pausa I Clinical Tarker, The Clinices University Hospital, Tarker, The Clinices University Hospital, Tarker, The Clinices University Hospital, Tarker, Tarker, The Clinices University Hospital, Tarker, Tarker, Theorem Concellege, National Tarker, University Hospital, Tarker, Tarker, Theorem Concessey, National Tarker, Michael Medica Concellege, National Clinice Clinices University Hospital, Tarker, Tarker, Marcell Clinical Clinices Medical Concellege, National Clinices Clinices University Hospital, Tarker, Tarker, Marcell Clinical Clinices (Second Tarker), Matoinal Clinices Clinices (Second Tarker), National Cl

Correspondence

Toshio Shimizu, M.D., PhD., Early Phase 1 Drug Development Service, Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-11 Sukiji, Chuo-City, Toloyo 10400-53, Japan. Email: toschimi@ncc.go.jp

Abstract

Aim: The significance and prioritization of early phase oncology trial continuation during a global pandemic is unknown. This study reported the outcomes, multiple challenges, and throat recommendations associated with the impact of the novel coronavirus disease 2019 (COVID-19) on oncology early phase 1 trials—and on drug development in Axia—based on the experiences and perspectives of Axian oncology phase 1 centers.

Methods: Between March and April 2020 during the initial period of outbreak, the impact of COVID-19 across oncology phase 1 sites in five Asian countries— China (Hong Kong), Japan, South Korea, Taiwan, and Singapore—was retrospectively analyzed.

Results: There was no trial termination or treatment discontinuation in all five countries. Although the most common impact was new patient enrollment being placed on hold, which was based on plarmaceutical sponsor's decision-making, the situation varied per site. Most sites had no restrictions in place that would limit their ability to fully comply with the requirements of conducting the early place studies. The number of protocol deviations during the pandemic was largely dependent on domestic transportation status during the outbreak rather than the ability of the linical trial centers. Conclusion: Determining the risk to benefits ratio of patients with cancer who are errolled in early plase 1 clinical trials under the unusual circumstances of a global

TABLE 2 Details of new patient enrollment being placed on hold owing to COVID-19 across five phase 1 centers in Asia during the initial period of pandemic

	China (Hong Kong)	Japan	South Korea	Singapore	Taiwan
Impacted trials	n = 1	n = 10	n = 5	n = 19	n = 4
Sponsors' decision	1/1 (100%)	10/10 (100%)	5/5 (100%)	1/19 (5.2%)	4/4 (100%)
Site/institute policy	0/1 (0%)	0/10 (0%)	0/5 (0%)	18/19 (94.7%)	0/4(0%)
Government statement	0/1 (0%)	0/10 (0%)	0/5 (0%)	0/19 (0%)	0/4(0%)
Delay of study material shipment	0/1 (0%)	0/10 (0%)	0/5 (0%)	0/19 (0%)	0/4(0%)
Other	0/1 (0%)	0/10 (0%)	0/5 (0%)	0/19 (0%)	0/4(0%)

What's next?

- Achieving regulatory approval is <u>not the endgame</u> getting drug to patients is!
- As investigators / clinical trialists, how can we improve patients' accessibility to therapeutic options?

Access to improved therapeutics for patients can only be achieved through:

- (1) Improved access to clinical trials
- (2) Enhanced identification of patients with actionable tumours
- (3) Encourage adoption of new health technologies

Asia Pacific Oncology Drug Development **Consortium (APODDC)**

0:

Herbert Loong (Hong Kong)

Daniel Tan (Singapore)

Toshio Shimizu (Japan)

Scientific Committee:

- Joanne Chiu (Hong Kong)
- Tira Tan (Singapore)
- Valerie Hong (Singapore)
- David Tan (Singapore)
- Bhumsuk Keam (South Korea)
- Thanynanan Regungwetwattana (Thailand)
- Naiyarat Pasongsook (Thailand)
- Chia-Chi (Josh) Lin (Taiwan)
- Pei Jye Woon (Malaysia)
- Ben Tran (Australia)
- Daphne Day (Australia)
- Amy Prawira (Australia)

Asia Pacific Oncology Drug Development **Consortium (APODDC)**

mittee: Kong)

pre)

(South Korea)

Kick off meeting on 31 March 2021! manan Regungwetwattana

- Naiyarat Pasongsook (Thailand)
- Chia-Chi (Josh) Lin (Taiwan)
- Pei Jye Woon (Malaysia)
- Ben Tran (Australia)
- Daphne Day (Australia)
- Amy Prawira (Australia)

Conclusions

- In the era of **molecular genomics**, **targeted therapies** & **smarter clinical trial designs** have put early phase clinical trials in the forefront of efficacy testing and regulatory approval
- This is especially true in matched molecular subsets, as evidenced by histologicagnostic and line-agnostic approvals of recent agents
- Drug development is **not only about obtaining regulatory approval**, but rather it is a holistic approach of **getting effective therapies to patients**.
- Our roles as investigators are to expedite this process through (i) conducting well designed and meaningful clinical trials; (ii) international collaborations; (iii) framing the perceived improved efficacy seen in trials to real life practice through discussions and studies with health authorities.

Sky-Diving 33 y.o. RET+ NSCLC patient

